Algorithms for Imperfect Phylogeny Haplotyping (IPPH) with a Single Homoplasy or Recombination Event

نویسندگان

  • Yun S. Song
  • Yufeng Wu
  • Dan Gusfield
چکیده

The haplotype inference (HI) problem is the problem of inferring 2n haplotype pairs from n observed genotype vectors. This is a key problem that arises in studying genetic variation in populations, for example in the ongoing HapMap project [5]. In order to have a hope of finding the haplotypes that actually generated the observed genotypes, we must use some (implicit or explicit) genetic model of the evolution of the underlying haplotypes. The Perfect Phylogeny Haplotyping (PPH) model was introduced in 2002 [9] to reflect the “neutral coalescent” or “perfect phylogeny” model of haplotype evolution. The PPH problem (which can be solved in polynomial time) is to determine whether there is an HI solution where the inferred haplotypes can be derived on a perfect phylogeny (tree). Since the introduction of the PPH model, several extensions and modifications of the PPH model have been examined. The most important modification, to model biological reality better, is to allow a limited number of biological events that violate the perfect phylogeny model. This was accomplished implicitly in [7,12] with the inclusion of several heuristics into an algorithm for the PPH problem [8]. Those heuristics are invoked when the genotype data cannot be explained with haplotypes that fit the perfect phylogeny model. In this paper, we address the issue explicitly, by allowing one recombination or homoplasy event in the model of haplotype evolution. We formalize the problems and provide a polynomial time solution for one problem, using an additional, empirically-supported assumption. We present a related framework for the second problem which gives a practical algorithm. We believe the second problem can be solved in polynomial time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal imperfect phylogeny reconstruction and haplotyping (IPPH).

The production of large quantities of diploid genotype data has created a need for computational methods for large-scale inference of haplotypes from genotypes. One promising approach to the problem has been to infer possible phylogenies explaining the observed genotypes in terms of putative descendants of some common ancestral haplotype. The first attempts at this problem proceeded on the rest...

متن کامل

O-36: Genome Haplotyping and Detection of Meiotic Homologous Recombination Sites in Single Cells, A Generic Method for Preimplantation Genetic Diagnosis

Background: Haplotyping is invaluable not only to identify genetic variants underlying a disease or trait, but also to study evolution and population history as well as meiotic and mitotic recombination processes. Current genome-wide haplotyping methods rely on genomic DNA that is extracted from a large number of cells. Thus far random allele drop out and preferential amplification artifacts of...

متن کامل

Constructing Near-Perfect Phylogenies with multiple homoplasy events

MOTIVATION We explore the problem of constructing near-perfect phylogenies on bi-allelic haplotypes, where the deviation from perfect phylogeny is entirely due to homoplasy events. We present polynomial-time algorithms for restricted versions of the problem. We show that these algorithms can be extended to genotype data, in which case the problem is called the near-perfect phylogeny haplotyping...

متن کامل

Influence of Tree Topology Restrictions on the Complexity of Haplotyping with Missing Data

Haplotyping, also known as haplotype phase prediction, is the problem of predicting likely haplotypes based on genotype data. One fast haplotyping method is based on an evolutionary model where a perfect phylogenetic tree is sought that explains the observed data. Unfortunately, when data entries are missing, as is often the case in real laboratory data, the resulting formal problem IPPH, which...

متن کامل

Efficient Computation of Template Matrices

The computation of template matrices is the bottleneck of simple algorithms for perfect phylogeny haplotyping and for perfect phylogeny under mutation and constrained recombination. The fastest algorithms known so far compute them in O(nm) time. In this paper, we describe an algorithm for computing template matrices in O(nm/ log(n)) time. We also present and discuss a conjecture that implies an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005